INTRODUCTION TO ALGEBRAIC GEOMETRY

Notes.

(a) Justify all your steps. You may use any result proved in class unless you have been asked to prove the same.

(b) There are a total of 120 points in the paper. You will be awarded a maximum of 100.

(b) \mathbb{Z} = integers, \mathbb{Q} = rational numbers, \mathbb{R} = real numbers, \mathbb{C} = complex numbers.

(c) By default, k denotes an algebraically closed field and \mathbb{A}_k^n is the affine n-space over k while \mathbb{P}_k^n is the projective n-space over k. By default, the polynomial ring of functions on \mathbb{A}_k^n is denoted as $k[x_1, \ldots, x_n]$ while for n = 1, 2, 3 we also use the usual notation of x, y, z for the variables.

(d) We will use $\mathcal{V}(-)$ to denote the common zero locus (in suitable affine or projective space) of any collection of polynomials and $\mathcal{I}(-)$ the ideal of functions vanishing on a given subset of affine or projective space.

1. [16 points] In each case below, give an example of a map of quasi-projective algebraic sets $f: X \to Y$ such that the induced map of the ring of regular functions $f^*: \mathcal{O}[Y] \to \mathcal{O}[X]$ is an isomorphism while the given additional condition also holds.

- (i) f is surjective, but not injective.
- (ii) f is injective, but not surjective.

2. [16 points] Let $f: X \to Y$ be a map of affine algebraic sets. Prove that f has a dense image \iff the induced map of coordinate rings $f^*: k[Y] \to k[X]$ is injective.

- 3. [16 points] Let V denote the union of the x-axis, the y-axis and the z-axis in \mathbb{A}^3_k .
 - (i) Prove that $\mathcal{I}(V)$ is the ideal (xy, yz, zx) in k[x, y, z].
 - (ii) Prove that V is not isomorphic to any quasi-affine algebraic set in \mathbb{A}_k^2 .

4. [16 points] Consider the regular map $\phi \colon \mathbb{P}^1 \to \mathbb{P}^3$ given by $[a:b] \to [a^3:a^2b:ab^2:b^3]$. Let C denote the image of ϕ .

- (i) Prove that C is a closed subset of \mathbb{P}^3 .
- (ii) Verify that ϕ induces a bijection from \mathbb{P}^1 to C.
- (iii) Verify that the inverse map $C \to \mathbb{P}^1$ is regular to deduce that $\phi \colon \mathbb{P}^1 \to C$ is an isomorphism

5. [16 points] Let k[x, y, z, w] denote the homogeneous coordinate ring of \mathbb{P}^3 . Construct a non-constant regular map from the variety $\mathcal{V}(xy - zw)$ in \mathbb{P}^3 to \mathbb{P}^1 .

May 2019

100 Points

ISI BANGALORE

6. [20 points] Let A, B be two distinct hyperplanes in \mathbb{P}^3 intersecting in a line L. Let M be a line in A different from L. Let $Z = (A \cup B) \setminus M$.

- (i) Find the irreducible components of Z.
- (ii) Prove that the natural restriction map $R = \mathcal{O}[Z] \longrightarrow \mathcal{O}[A \setminus M] = S$ is injective and identifies elements of R with those elements of S that are constant along L.
- (iii) Deduce that $\mathcal{O}[Z]$ is isomorphic to the ring $k[x, xy, xy^2, xy^3, \ldots]$.
- (iv) Prove that $\mathcal{O}[Z]$ is not a noetherian ring.

7. [20 points] Let $f: X \to Y$ be a map of irreducible quasi-projective varieties such that the image of f is dense in Y.

- (i) Prove that there is a natural induced map of function fields $K(Y) \to K(X)$.
- (ii) If $K(Y) \to K(X)$ is an algebraic extension, prove that there exist affine open subsets $U \subset X$, $V \subset Y$, with $f(U) \subset V$ such that the coordinate ring k[U] is a free module of finite rank over the coordinate ring k[V].
- (iii) Prove that if [K(X): K(Y)] = d in (ii), then the rank of k[U] over k[V] is d and deduce that every fiber of the natural map $U \to V$ has cardinality at most d, (i.e., for every point $q \in V$ there are at most d points in U mapping to it).

(Hint: For (iii), you may use the fact that if R is a k-algebra of finite vector-space dimension d, then R has at most d prime ideals.)